Magnetic Interactions in Ternary Cobalt Oxides with Cubic Perovskite Structure

H. TAGUCHI,* M. SHIMADA,† AND M. KOIZUMI

The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan

Received March 13, 1981; in revised form June 10, 1981

Magnetic properties were measured on the cubic perovskite systems $SrCoO_{3-\delta}$, $(La_{1-x}Sr_x)CoO_3$ ($0.5 \le x \le 1.0$), and $Sr(Co_{1-x}Mn_x)O_3$ ($0 \le x \le 1.0$). It is found that Sr^{2+} and La^{3+} ions strongly affect the spin state of the Co³⁺ ion and that the Mn⁴⁺ ion located at the octahedral site affects the spin state of Co⁴⁺ ion. The magnetic properties (T_c , T_{θ} , and σ) are explained by the magnetic interaction $Co^{3+}-O-Co^{3+}$, $Co^{3+}-O-Co^{4+}$, $Co^{4+}-O-Co^{4+}$, $Mn^{4+}-O-Mn^{4+}$, and $Mn^{4+}-O-Co^{4+}$ in these systems.

Introduction

In the oxides containing the tetravalent state of the first-row transition metal ions, Me⁴⁺O₂ (Me: Ti, V, Cr, and Mn), oxides with rutile structure are well known and their physical properties are also systematically examined in detail. In the oxides containing Fe, Co, and Ni ions, however, these ions are normally in the di- or trivalent state. But a tetravalent state of Fe, Co, and Ni ions exists only in the oxides with perovskite structure in $CaFeO_3(1)$, $SrFeO_3$ (2), $BaCoO_3$ (3), $SrCoO_3$ (4), and $BaNiO_3$ (5), whose chemical formulas are generally presented as $A^{2+}B^{4+}O_3$ (A: alkaline earth metal, B: transition metal). In the cubic perovskite-type oxides, the B^{4+} ion is at the octahedral site, each octahedron shares corners, and the angle B - O - B is 180°.

SrCoO₃ has the cubic perovskite struc-

† To whom correspondence should be addressed.

0022-4596/81/130042-05\$02.00/0

Copyright © 1981 by Academic Press, Inc.

All rights of reproduction in any form reserved.

ture and exhibits ferromagnetism below 200K, the electron configuration of Co⁴⁺ ion is the low-spin state with $(d\epsilon)^5 (d\gamma)^0 (4)$. We have synthesized nonstoichiometric cubic perovskite SrCoO₃₋₆ under high oxygen pressures of 5-260 MPa, and its crystallographic and magnetic properties have been examined (6). These results indicate that the oxygen deficiency in SrCoO₃₋₆ strongly influences the cell constant and the magnetic properties.

In the system $(La_{1-x}Sr_x)CoO_3$, Co^{4+} and Co^{3+} ions coexist at the octahedral sites in the cubic perovskite structure (7). The Co^{4+} ion content increases with increasing Sr^{2+} ion content. Raccah and Goodenough have reported that the magnetic properties of $(La_{1-x}Sr_x)CoO_3$ ($0 \le x \le 0.5$) change from antiferromagnetic to ferromagnetic with increasing Sr^{2+} ion content (8). We have synthesized the cubic $(La_{1-x}Sr_x)CoO_3$ without oxygen deficiency in the range of $0.5 \le x \le 1.0$ under high oxygen pressures (9). From the magnetic measurement, it was found that all samples showed ferro-

^{*} Present address: Osaka Prefectural Industrial Research Institute, Osaka 550, Japan.

magnetism, the Co⁴⁺ ion was in the lowspin state with $(d\epsilon)^5 (d\gamma)^0$, and the Co³⁺ ion was in the high-spin state with $(d\epsilon)^4 (d\gamma)^2$.

SrMnO₃ has a cubic perovskite structure with a = 0.3808 nm (10) and is an antiferromagnet with Néel temperature at 260K (11). From a neutron diffraction study, SrMnO₃ was determined to show a G-type antiferromagnetic ordering. The magnetic moment of Mn⁴⁺ ion is $2.6 \pm 0.2 \mu_B$ at 77K. A solid solution of Sr(Co_{1-x}Mn_x)O₃ was prepared under high oxygen pressures to study the effect of the replacement of the Mn⁴⁺ ion with Co⁴⁺ ion on the magnetic properties (12).

In the present study, an attempt is made to provide some information on the magnetic interaction of $Co^{3+}-O-Co^{3+}$, $Co^{3+}-O-Co^{4+}$, $Co^{4+}-O-Co^{4+}$, $Co^{4+}-O-Mn^{4+}$, and $Mn^{4+}-O-Mn^{4+}$ in the systems $SrCoO_{3-\delta}$, $(La_{1-x}Sr_x)CoO_3$, and $Sr(Co_{1-x}Mn_x)O_3$.

Experimental

A. Preparation

 $SrCoO_{3-\delta}$. The starting materials were prepared by mixing reagent-grade powders of $SrCoO_3$ and $CoCO_3$. The mixture was calcined in air at 800°C, then ground and fired at 1000°C in a pure oxygen gas stream for 24 hr. The oxygen-deficient materials obtained in this way were annealed under high oxygen pressures of 5–260 MPa at 250–400°C for 24–72 hr.

 $(La_{1-x}Sr_x)CoO_3$ $(0.5 \le x \le 1.0)$. The starting materials were prepared by mixing reagent-grade powders of La₂O₃, SrCoO₃, and CoCO₃. The mixture was calcined in air at 800°C, then ground and fired at 1000– 1300°C in a pure oxygen gas stream for 24 hr. The oxygen-deficient materials obtained in this way were annealed under high oxygen pressures of 140 MPa at 300°C for 72 hr.

 $Sr(Co_{1-x}Mn_x)O_3$ ($0 \le x \le 1.0$). The starting materials were prepared by mixing reagent-grade powders of $SrCO_3$, $CoCO_3$,

and MnCO₃. The mixture was calcined in air at 800°C, then ground and fired at 1000– 1350°C in a pure oxygen stream for 24 hr. The oxygen-deficient materials obtained in this way were annealed under high oxygen pressures of 140 MPa at 300°C for 72 hr.

B. Chemical Analysis

The oxygen content in $SrCoO_{3-\delta}$ and the Co^{4+} ion content in $(La_{1-x}Sr_x)CoO_3$ were determined by chemical analysis (3). The total amount of cobalt (Co^{3+} and Co^{4+} ions) was determined as follows: A sample was dissolved in hydrochloric acid and α -nitroso- β -naphthol was added to this solution. The precipitate was filtered off and burnt in a crucible at 650–750°C. The cobalt content was weighed as Co_3O_4 . The ratio Co^{3+}/Co^{4+} was determined by a redox method. After KI solution and hydrochloric acid were added to dissolve the sample in a flask, the solution was titrated with a standard sodium thiosulfate solution.

C. X-Ray Diffraction

The samples were identified by X-ray powder diffraction with filtered Cu $K\alpha$ and Co $K\alpha$ radiations. The cell constants of the samples were calculated from high-angle reflections using Si as a standard material.

D. Magnetic Properties

Magnetic properties were measured using an automatic recording balance in the temperature range from 77 to 350K in a field of 8 kOe. The temperature was measured with an AuCo-Cu thermocouple.

According to a Jonker's report (13), the signs and magnitudes of the exchange interactions of $Co^{3+}-O-Co^{3+}$, $Co^{3+}-O-Co^{4+}$, $Co^{4+}-O-Co^{4+}$, $Co^{4+}-O-Mn^{4+}$, and $Mn^{4+}-O-Mn^{4+}$ in the systems $SrCoO_{3-\delta}$, $(La_{1-x}Sr_x)CoO_3$ ($0.5 \le x \le 1.0$) and $Sr(Co_{1-x}Mn_x)O_3$ ($0 \le x \le 1.0$) were determined. In the system $(La_{1-x}Sr_x)CoO_3$, for example, the interaction energies in term of T_{θ} were expressed as follows: θ_a for $Co^{3+}-$ O-Co³⁺, θ_b for Co³⁺-O-Co⁴⁺ and θ_c for Co⁴⁺-O-Co⁴⁺. The fraction of the Co³⁺ and Co⁴⁺ ions were 1 - x and x, respectively. The fractions of neighboring pairs were then $(1 - x)^2$ for Co³⁺-O-Co³⁺, 2x(1 - x) for Co³⁺-O-Co⁴⁺ and x^2 for Co⁴⁺-O-Co⁴⁺. If θ_a , θ_b , and θ_c were considered as constants in the system, the compositional dependence of T_{θ} were calculated using the following equation:

$$T_{\theta} = (1-x)^2 \theta_{\mathrm{a}} + 2x(1-x)\theta_{\mathrm{b}}' + x^2 \theta_{\mathrm{c}}$$

By putting the value of T_{θ} into each x, the signs and magnitudes of the exchange interactions of $Co^{3+}-O-Co^{3+}$, $Co^{4+}-O-Co^{3+}$ and $Co^{4+}-O-Co^{4+}$ were calculated.

Results and Discussion

In the system $\text{SrCoO}_{3-\delta}$, the Co⁴⁺ and Co³⁺ ions are in the low-spin state with $(d\epsilon)^5(d\gamma)^0$ and $(d\epsilon)^6(d\gamma)^0$, respectively, and the Co³⁺ ion has no magnetic moment (6). The magnetic interactions of Co³⁺-O-Co³⁺ and Co³⁺-O-Co⁴⁺ are absent, and that of Co⁴⁺-O-Co⁴⁺ is ferromagnetic. With increasing oxygen deficiency, the Co⁴⁺ ion content decreases and the magnetic interac-

tion of $Co^{4+}-O-Co^{4+}$ is weak. The signs of the magnetic interactions of $Co^{3+}-O-Co^{3+}$, $Co^{3+}-O-Co^{4+}$, and $Co^{4+}-O-Co^{4+}$ in $SrCoO_{3-\delta}$ are listed in Table I.

In the system $(La_{1-x}Sr_x)CoO_3$, the Co⁴⁺ ion is in the low-spin state with $(d\epsilon)^{5}(d\gamma)^{0}$ and the Co³⁺ ion is in the high-spin state with $(d\epsilon)^4 (d\gamma)^2 (9)$. Since the Co³⁺ ion has a magnetic moment, the magnetic interactions of Co³⁺-O-Co³⁺, Co³⁺-O-Co⁴⁺, and $Co^{4+}-O-Co^{4+}$ occurs in this system. T_{θ} of $(La_{1-x}Sr_x)CoO_3$ with cubic structure forms a parabolic curve for $0.5 \le x \le 1.0$. By putting the value of T_{θ} into each x into an equation, the best-fitting results are calculated as listed in Table I. Since the magnetic interaction of Co³⁺-O-Co⁴⁺ is the strongest, T_{θ} and T_{c} increase with decreasing x from 1.0 to 0.7, and has maximum values $(T_{\theta} = 310 \text{K and } T_{c} = 280 \text{K})$ at around x =0.7. However, as the content of the La^{3+} ion increases, the magnetic interaction of Co³⁺-O-Co³⁺ begins to play an important role in the total magnetic interaction, and T_{θ} and T_c decrease monotonically.

In the system $Sr(Co_{1-x}Mn_x)O_3$, it is considered that the spin state of the Co⁴⁺ ion changes from low to high at around x = 0.3

SrCoO ₃₋₆	Magnetic interaction		Spin state of Co ^{s+}	Spin state of Co ⁴⁺	Magnetic properties
	$Co^{3+}-O-Co^{3+}$ $Co^{3+}-O-Co^{4+}$ $Co^{4+}-O-Co^{4+}$	none none ferro	$\log^{(d\epsilon)^6}(d\gamma)^0$	low $(d\epsilon)^5 (d\gamma)^0$	ferro
(La _{1-x} Sr _x)CoO ₃	Co ³⁺ -O-Co ³⁺ Co ³⁺ -O-Co ⁴⁺ Co ⁴⁺ -O-Co ⁴⁺	~-200K ~440K ~280K	high $(d\epsilon)^4(d\gamma)^2$	$\log_{(d\epsilon)^5(d\gamma)^0}$	ferro
$Sr(Co_{1-x}Mn_x)O_3$ $(0 \le x \le 0.3)$	Co ⁴⁺ -O-Co ⁴⁺ Co ⁴⁺ -O-Mn ⁴⁺ Mn ⁴⁺ -O-Mn ⁴⁺	~280K ~-146K ~-750K		$\log_{(d\epsilon)^5(d\gamma)^0}$	ferro
$0.3 < x \leq 1.0$	Co ⁴⁺ -O-Co ⁴⁺ Co ⁴⁺ -O-Mn ⁴⁺ Mn ⁴⁺ -O-Mn ⁴⁺	~-1080K ~420K ~-750K		high $(d\epsilon)^3(d\gamma)^2$	antiferro

TABLE I MAGNETIC INTERACTION OF CO³⁺, CO⁴⁺, AND MD⁴⁺ IONS

(12). Since the change of the spin state in the Co4+ ion strongly influences the cell constant and the magnetic properties, $Sr(Co_{1-x}Mn_x)O_3$ changes from ferromagnet to antiferromagnet at around x = 0.3. The magnetic interactions of Co⁴⁺-O-Co⁴⁺, Co4+-O-Mn4+ and Mn4+-O-Mn4+ are calculated by the same method as made in the system $(La_{1-r}Sr_r)CoO_3$. The variation of T_{e} is shown in Fig. 1. In the range $0 \le x \le 0.3$, T_{θ} decreases parabolically with increasing x. The magnetic interactions are calculated from the observed T_{θ} , and are listed in Table I. The magnetic interaction of Co⁴⁺-O-Co4+ is ferromagnetic and the others are antiferromagnetic. The decrease in σ_0 also suggests that the magnetic moment of the Mn⁴⁺ ion aligns in the direction antiparallel to that of the Co^{4+} ion. In the case where x is larger, the magnetic interactions of Co⁴⁺-O-Mn⁴⁺ and Mn⁴⁺-O-Mn⁴⁺ play an important role in the total magnetic interaction, T_{θ} , T_{c} , and σ_{0} decrease with increasing x.

In the range 0.3–1.0, T_{θ} is negative and parabolic. The magnetic interactions of $Co^{4+}-O-Co^{4+}$, $Co^{4+}-O-Mn^{4+}$, and $Mn^{4+}-O-Mn^{4+}$ are also listed in Table I. The magnetic interaction of $Co^{4+}-O-Co^{4+}$ changes from ferromagnetic (280K) to strongly antiferromagnetic (-1080K), according to the change of the spin state of Co^{4+} ion, and that of $Co^{4+}-O-Mn^{4+}$ changes from antiferromagnetic (146K) to

FIG. 1. Paramagnetic Curie temperature vs x in the system $Sr(Co_{1-x}Mn_x)O_3$.

ferromagnetic (420K). Since the magnetic interactions of Co⁴⁺-O-Co⁴⁺ and Mn⁴⁺-O-Mn⁴⁺ are larger than that of Co⁴⁺-O-Mn⁴⁺, Sr(Co_{1-x}Mn_x)O₃ is antiferromagnetic in the range of $0.3 \le x \le 1.0$.

Goodenough reported the 180K supermagnetic interaction of Me-O-Me (Me: the transition metal) in various oxides (14). The magnetic interaction of $3d^5$ -O- $3d^5$, for example, $Fe^{3+}(high) - O - Fe^{3+}(high)$, is strongly antiferromagnetic. This is in agreement with the results of Co4+(high)-O- $Co^{4+}(high)$ in the system $Sr(Co_{1-x}Mn_x)O_3$. In the oxides containing Fe³⁺ ions, since the spin state of Fe³⁺ ions at the octahedral site is usually high, we did not examine the magnetic interaction between low-spin state $Fe^{3+}(3d^5)$ in perovskite and spinel oxides (14). From the results of $Sr(Co_{1-x}Mn_x)O_3$, it is assumed that the magnetic interaction of Fe³⁺(low)-O-Fe³⁺(low) would be ferromagnetic.

In the system $SrCoO_{3-\delta}$, both Co⁴⁺ and Co³⁺ ions are in the low-spin state. In the system $(La_{1-x}Sr_x)CoO_3$, the Co⁴⁺ ion is the low-spin state and the Co³⁺ ion is the high-spin state. And, in the system $Sr(Co_{1-x}Mn_x)O_3$, the spin state of the Co⁴⁺ ion changes from low to high at around x =0.3. The difference of the spin states of the Co^{3+} ion in the systems $SrCoO_{3-\delta}$ and $(La_{1-x}Sr_x)CoO_3$ suggests that the A cations (Sr²⁺ and La³⁺) play a significant role in determining the electron configuration of the other cations located at the octahedral sites. Considering the ionic radii of La³⁺ of 0.132 nm and that of Sr^{2+} ion of 0.144 nm (15), it is expected that the bonding between La³⁺-O²⁻ is stronger than that between Sr²⁺-O²⁻. An increasing La³⁺ ion content in $(La_{1-x}Sr_x)CoO_3$, causes the electron cloud of $2P\pi$ in oxygen to be attracted to the La³⁺ ion, and therefore the Co³⁺ ion with the high-spin state would be stabilized in the octahedral site.

It is considered that the change of the spin state of the Co⁴⁺ ion in the system

Sr(Co_{1-x}Mn_x)O₃ is caused by the replacement of Mn⁴⁺ ions, whose polarization power is larger than that of the Co⁴⁺ ion (16). In the range of $0.3 \le x \le 1.0$, the oxygen located at the chain of Co⁴⁺-O-Mn⁴⁺ deviates from the center, i.e., larger CoO₆ octahedra and small MnO₆ octahedra, which are connected to each other via the oxygens of the apex of the octahedra, are distributed statistically (17).

References

- F. KANAMARU, H. MIYAMOTO, Y. MIMURA, M. KOIZUMI, M. SHIMADA, AND S. KUME, Mater. Res. Bull. 5, 257 (1970).
- J. B. MACCHESNEY, R. C. SHERWOOD, AND J. F. POTTER, J. Chem. Phys. 43, 1907 (1965).
- 3. B. E. GUSHEE, L. KATZ, AND R. WARD, J. Amer. Chem. Soc. 79, 5601 (1957).
- 4. H. WATANABE, J. Phys. Soc. Japan 12, 515 (1957).

- 5. Y. TAKEDA, F. KANAMARU, M. SHIMADA, AND M. KOIZUMI, Acta Crystallogr. Sect. B 32, 2464 (1976).
- H. TAGUCHI, M. SHIMADA, AND M. KOIZUMI, J. Solid State Chem. 29, 221 (1979).
- 7. G. H. JONKER AND J. H. VAN SANTEN, *Physica* 19, 120 (1953).
- P. M. RACCAHA AND J. B. GOODENOUGH, J. Appl. Phys. 39, 1209 (1968).
- 9. H. TAGUCHI, M. SHIMADA, AND M. KOIZUMI, Mater. Res. Bull. 13, 1225 (1978).
- J. B. MACCHESNEY, H. J. WILLIAM, J. F. POT-TER, AND R. C. SHERWOOD, *Phys. Rev.* 164, 779 (1967).
- T. TAKEDA AND S. OHARA, J. Phys. Soc. Japan 37, 275 (1974).
- H. TAGUCHI, M. SHIMADA, F. KANAMARU, M. KOIZUMI, AND Y. TAKEDA, J. Solid State Chem. 18, 299 (1976).
- 13. G. H. JONKER, Physica 22, 707 (1956).
- 14. J. B. GOODENOUGH, "Magnetism and the Chemical Bond." Krieger, New York (1976).
- R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. Sect. B 25, 925 (1969).
- L. PAULING, "The Nature of the Chemical Bond." Cornell Univ. Press (1960).
- H. TAGUCHI, M. SHIMADA, M. KOIZUMI, AND F. KANAMARU, J. Solid State Chem. 35, 246 (1980).